www.applmath.az

Home az | ru | en

Aqil Xanməmmədov

Fizika-riyaziyyat elmləri doktoru, professor
İş telefonu: +(994) 12 438 25 18
e-mail: aqil_khanmamedov@yahoo.com

QISA BİOQRAFİK MƏLUMAT
1973-cü il martın 23-də Agstafa rayonunda anadan olub.
1980-1990-cü illərdə Agstafa rayonu Aşağı Kəsəmən kənd orta məktəbində oxuyub.
1990-1995-ci illərdə BDU-nun tətbiqi-riyaziyyat fakültəsinində təhsil alıb.
1995-1998-ci illərdə BDU-nun tətbiqi riyaziyyat kafedrasının aspirantı olub.
1998-cu ildən BDU-nun tətbiqi riyaziyyat kafedrasında çalışır.
Ailəlidir, iki övladı var.

TƏHSİLİ VƏ ELMİ DƏRƏCƏ
2008, f.-r.e.d., «Fərq operatorları üçün səpilmənin tərs məsələləri və onların tətbiqləri»
1998, f-r.e.n., «Bütün oxda ikinci tərtib fərq tənlikləri üçün səpilmənin tərs məsələsi və onun tətbiqi»
1990-1995, tələbə, Tətbiqi-riyaziyyat fakültəsi, BDU

ƏMƏK FƏALİYYƏTİ
2009-h/h, professor, Tətbiqi riyaziyyat kafedrası, Tətbiqi riyaziyyat və kibernetika fakültəsi, BDU
2005- h/h , dosent, Tətbiqi riyaziyyat kafedrası, Tətbiqi riyaziyyat və kibernetika fakültəsi, BDU
2003-2005 , müəllim, Tətbiqi riyaziyyat kafedrası, Tətbiqi riyaziyyat və kibernetika fakültəsi, BDU
1998-2003, müəllim, Tətbiqi riyaziyyat kafedrası, Tətbiqi riyaziyyat və kibernetika fakültəsi, BDU
Apardığı dərslər: Riyazi analiz,həndəsə və cəbr
39 elmi məqalənin və bir metodik vəsaitinin müəllifidir.

TƏDQIQAT SAHƏSI
Fərq operatorları üçün spektral analizin tərs məsələləri. Qeyri-xətti tənliklərin inteqrallanması.

BEYNƏLXALQ SEMİNAR, SİMPOZİUM VƏ KONFRANSLARDA İŞTİRAKI
2002, Xarkov, Ukrayna; «Tərs məsələlər və qeyri-xətti tənliklər» beynəlxalq konfransı
2009- Elm və təhsilin inkişafındakı  xidmətlərinə görə BDU-nun 90 illik yubileyi ərəfəsində BDU-nun rektoru tərəfindən Fəxri fərmanla təltif edilmişdir.
2011- Solution of the cauchy problem for the volter chain with unbounded initial condition. / ABSTRACTS of the 4th Congress of the Turkic World Mathematical Society, Ministry of Education of the Republic of Azerbaijan, Baku  Azerbaijan, 1-3 July, 2011, p. 229.
2014- Zadaça Koşi dlə lenqmörovskiy üepoçki so stupeneobraznım naçalğnım usloviem. On Actual Problem of Mathematics and Mechanics, International conference devoted to the 55-th anniversary of the Institute of Mathematics and Mechanics, May 15-16, 2014, Baku, Azerbaijan


SEÇIILMIŞ ƏSƏRLƏRI
1.Асимптотика решения задачи Коши для цепочки Тоды с начальными данными типа ступеньки//Теор.и матем. физика, 1999, т.119, №3, с.429-440.
2.Операторы преобразования для возмущенного разностного уравнения Хилла и их одно приложение // Сибир. матем. журн., 2003 т.44, №4, с.926-937.
3. О быстроубыващем решении задачи Коши для цепочки Тоды //Теор.и матем. физика, 2005, т.142, №1, с.5-12.
4. Об интегрировании начально-краевой задачи для цепочки Вольтерра //Дифференц.уравнения, 2005, т.41, №8, с.1134-1136.
5. Быстроубывающее решение начально-краевой задачи для цепочки Тоды //Укр.мат.журн., 2005, т.57, №8, с.1144-1152.
6. Метод интегрирования задачи Коши для ленгмюровской цепочки с расходящимся начальным условием // Журн. вычис.мат.и мат.физ., 2005, т.45, №9, с.1639-1650.
7. Прямая и обратная задачи рассеяния для возмущенного разностного уравнения Хилла //Матем.сборник, 2005, т.196, №10, с.137-160.
8. Обратная задача рассеяния для разностного оператора Шредингера,заданного на полуоси//Доклады Академии Наук(Россия), 2006, т.409, №4,с.451-454.
9. Решение задачи Коши для цепочки Тоды с предельно периодическими начальнымы даннымы, Матем. Сборник, 2008, т.199, №3, с.133-142.
10. Начально-краевая задача для цепочки Вольтера на полуоси с нулевым граничным условием// Доклады Академии Наук (Россия), 2008, т.423, №2, с.170-172.
11.Обратная задача рассеяния для возмущенного разностного уравнения Хилла, Матем.заметки,2009,т.85,№3,с.456-470.
12. Обратная задача рассеяния для разностного оператора Дирака на полуоси,
Доклады Академии Наук (Россия), 2009, т.424, №5, с.597-599
13.Об одном алгоритме решения задачи Коши для ленгмюровской цепочки//
Журн.вычис.мат.и мат.физ., 2009, т.49, №9, с.1589-1594
14. Об условиях дискретности спектра полубесконечной матрицы Якоби с нулевой диагональю//Укр.мат.журн., 2010, т.57, №2, с.285-289
15. Задача Коши для полубесконечной цепочки Вольтера с асимптотически периодическим начальным условием// Сибир. матем. журн., 2010 т.51, №2, с.926-937.
16.О глобальной разрешимости задачи Коши для одной бесконечной системы нелинейных дифференциальных уравнений//Дифференц.уравнения, 2010, т.46, №2, с.113-116.
17. Обратная задача рассеяния для дискретного оператора Штурма-Лиувилля на всей оси// Доклады Академии Наук (Россия), 2010, т.431, №1, с.25-26
18.Решние задачи Коши для полубесконечной  цепочки Тоды в классе операторов Гильберта-Шмидта//Доклады Академии Наук (Россия), 2010, т.432, №4, с.
19. Обратная задача рассеяния для возмущенного разностного уравнения Хилла. Математические заметки.  2009. т.85, № 3, с.456-470.
20. Решение задачи Коши для полубесконечной цепочки тоды в классе операторов Гильберта-Шмидта. Доклады РАН, 2010. т.432, № 4, с.456-457.
21. Спектральный анализ одного класса разностных операторов Шредингера. Доклады Российской АН  том.436, № 6, февраль-2011.
22. Метод решения одной  системы нелинейных дифференциальных уравнений. Доклады НАН Азербайджана, 2012, T.LXVIII, №2 c.10-14.
23. L.K.Asadova. Inverse scattering problemfor a class of discrete Schrodinger operators. // Proceedings of IMM of NAS of Azerbaijan, 2013, vol.XXXVIII(XLVI), pp. 81-86.
24. Method of integration  of the Volterra chain with stepwise initial condition. //  Proc. of the Institute of Mathematics and Mechanics NAS of Azerbaijan, vol.40, Special Issue, 2014,p.11-15.
25. Задача коши для полубесконечной цепочки вольтерра с периодическим начальным условием*. Proceedings of IAM, V.4, N.1, 2015, pp.16-19

KITABLAR
Ardıcıllığın limitinə dair məsələ və misallar. Bakı, 2008.
Обратные задачи рассеяния для разностных операторов и их приложения. Издатель: LAP LAMBERT Academic Publishing 2011. http:/dnd.d-nb.de. info@lap-publishing.com монография
Kompleks dəyişəli  funksiyalar nəzəriyyəsinin  elementləri. dərs vəsziti.BDU, Bakı-2013.119s.

Bookmark and Share